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Abstract: 

The increasing demand for energy efficiency and safety in industrial 

environments has led to the integration of Internet of Things (IoT) 

technologies to monitor and analyze environmental conditions, such as 

temperature and humidity. One such critical metric is the Heat Index 

(HI), which combines air temperature and humidity to represent the 

perceived temperature by humans. In industrial settings, high heat 

levels can significantly affect worker safety, equipment performance, 

and energy consumption. This paper proposes innovative algorithms 

for analyzing heat index data as a sustainable approach for Industrial 

IoT applications. By leveraging advanced data fusion, machine 

learning models, edge computing, and time series forecasting, these 

algorithms aim to optimize environmental management, predictive 

maintenance, and operational efficiency in industries such as 

manufacturing, agriculture, and warehousing. The paper discusses the 

history and evolution of heat index monitoring in industrial sectors, 

identifies limitations in traditional methods, and highlights the need for 

more efficient, scalable, and real-time solutions. Moreover, it 

emphasizes the significance of these algorithms in achieving 

sustainability goals, reducing operational costs, and improving safety 

standards. The concept of the Heat Index (HI) dates back to the 1970s 

when it was first introduced to quantify the effect of humidity on 

temperature, affecting human comfort levels. As industrialization 

expanded, the need to monitor environmental conditions to ensure 

worker safety and equipment reliability became critical. Traditional 

systems for monitoring temperature and humidity typically relied on 

basic instrumentation with manual data collection, leading to 

inefficiencies in identifying extreme heat conditions and responding 

proactively. Over time, technological advancements in sensors, IoT, 

and data analytics have enabled more sophisticated and real-time 

monitoring of heat index data, paving the way for its application in 

industrial IoT systems. 
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1. INTRODUCTION 

 
The rapid growth of the Internet of Things (IoT) has revolutionized 

various industries by enabling real-time data collection and analysis 

through interconnected devices. In the context of environmental 

monitoring, IoT sensors play a crucial role in measuring parameters 

like temperature, humidity, and pressure, facilitating smart decision- 

 

 

making in domains such as industrial automation, urban planning, and 

energy management. This project focuses on using IoT temperature 

data to classify locations as indoor ("in") or outdoor ("out") using 

machine learning techniques. Traditional systems for such 

classification often rely on static thresholds or manual processes, 

which are inadequate for handling the complexity and volume of IoT 

data. To address these challenges, the project leverages advanced 

algorithms like Decision Tree Classifier and XGBoost Classifier to 

automate the classification process and provide a scalable, accurate 

solution. 

The classification of environmental data into indoor and outdoor 

categories is a critical requirement for various IoT-based applications 

such as environmental monitoring, smart energy systems, and 

industrial automation. Traditional systems rely on static thresholds or 

manual processes to distinguish between indoor and outdoor 

environments, which often lead to inaccuracies due to the complexity 

of real-world data. Moreover, the increasing volume of IoT data makes 

manual methods impractical and inefficient. The key challenge lies in 

handling multi-dimensional data generated by IoT sensors, where 

relationships between variables such as temperature, time, and location 

may not be linear or intuitive. The lack of adaptive and scalable 

systems for data classification results in suboptimal utilization of IoT 

infrastructure, leading to wasted energy, compromised environmental 

monitoring, and limited automation capabilities. This project addresses 

these challenges by implementing machine learning algorithms, 

specifically Decision Tree Classifier and XGBoost Classifier, to 

accurately classify IoT temperature data as indoor or outdoor. The 

problem emphasizes the need for an automated, efficient, and scalable 

solution to handle large datasets while delivering accurate and reliable 

results. 

As IoT adoption continues to grow, the ability to process and derive 

insights from sensor data becomes increasingly essential. IoT-based 

temperature monitoring has applications ranging from smart homes 

and industrial automation to environmental conservation. Traditional 

methods of classification are outdated, incapable of handling high- 

dimensional data, and fail to adapt to dynamic environments. The 

motivation for this research stems from the need to harness the full 

potential of IoT data through machine learning models that can 

automate and improve classification tasks. By replacing manual and 

static methods with intelligent algorithms, the project aims to pave the 

way for smarter and more sustainable IoT systems. Additionally, the 

research seeks to demonstrate the power of feature engineering and 

advanced algorithms like Decision Tree Classifier and XGBoost 

Classifier in solving real-world classification problems. This 
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motivation aligns with the broader goals of improving efficiency, 

reducing resource wastage, and enabling smarter decision-making in 

IoT-driven ecosystems. 

This project is significant for its potential to transform IoT-based 

environmental monitoring and classification systems. By automating 

the classification of indoor and outdoor environments, it enables more 

efficient energy management, precise environmental monitoring, and 

better resource allocation. The use of machine learning algorithms 

ensures adaptability to changing conditions, improving the reliability 

of predictions over time. The project’s emphasis on scalability makes 

it highly relevant for industries managing large-scale IoT deployments. 

For example, in smart cities, accurate classification of environmental 

data can optimize energy consumption in public spaces. Similarly, in 

industrial settings, it can enhance predictive maintenance by 

understanding environmental changes that might impact equipment. 

Another key significance is the potential to reduce manual 

intervention, saving time and minimizing errors. The insights derived 

from this project can also drive innovation in IoT-based applications, 

encouraging the adoption of data-driven decision-making in diverse 

industries. Moreover, it contributes to sustainable development goals 

by optimizing resource utilization and reducing energy waste. It can 

also be integrated into security systems for enhanced identification at 

entry points in sensitive areas such as airports, military installations, 

and government buildings. Additionally, it can be used in surveillance 

systems to accurately identify individuals under various lighting 

conditions, improving the reliability of monitoring and tracking 

efforts. 

The classification of indoor and outdoor environments using IoT data 

has a wide range of applications. In smart energy management, it helps 

optimize heating, ventilation, and air conditioning (HVAC) systems in 

buildings by identifying indoor and outdoor conditions, reducing 

energy consumption, and improving sustainability in smart homes and 

offices. In environmental monitoring, it enhances air quality 

monitoring systems by categorizing data based on location and 

supports urban planning by providing detailed environmental insights. 

In industrial automation, it improves predictive maintenance by 

accounting for environmental factors that affect equipment 

performance and enhances safety systems by monitoring temperature 

variations in specific zones. In smart cities, it enables efficient resource 

allocation in public spaces by understanding environmental conditions 

and improves the management of shared infrastructure such as parks, 

streets, and transportation systems. Finally, in health and safety, it 

helps monitor indoor and outdoor environments to ensure safe 

conditions for workers in industrial setups and assists in designing 

better ventilation systems in enclosed spaces. 

2. LITERATURE SURVEY 

Maintaining a stable and comfortable indoor climate in buildings is 

essential for the health and well-being of occupants while also 

playing a critical role in optimizing energy consumption and 

reducing environmental impact [1]. This is particularly significant in 

the context of rising energy prices and the pressing need to combat 

global warming. As a result, the construction industry is shifting 

toward “smart” buildings, which leverage automation to achieve 

maximum energy efficiency and occupant comfort [2]. Additionally, 

new regulations and standards worldwide demand improved energy 

efficiency and indoor environmental quality in modern buildings [3]. 

In this scenario, surrogate modeling has emerged as a transformative 

tool for enhancing building energy management and climate control. 

Surrogate models (SMs), or metamodels, are simplified 

representations of complex systems that approximate the behavior of 

detailed models at a fraction of the computational cost. These models 

enable faster forecasting and real-time decision-making, crucial for 

smart building applications. By integrating flexibility and 

adaptability, SMs ensure relevance and accuracy in dynamic 

environments while reducing the computational burden, making 

them essential components of modern building management systems 

[4]. Several types of surrogate models (SMs) exist, each with distinct 

characteristics and applications. These include polynomial 

regression, Gaussian processes, radial basis functions (RBFs), 

support vector machines (SVMs), among others [5]. Polynomial 

regression uses polynomial functions to model dependencies 

between variables, being simple and straightforward, but less 

accurate for very complex functions[6]; Gaussian Process provides 

flexible modeling of complex dependencies using probabilistic 

approaches to estimate forecast uncertainty[7]; RBFs use distance- 

to-center functions to build smooth interpolation models, which is 

useful for problems with irregular data[8]; SVMs use hyperplanes to 

separate data in high-dimensional spaces where nonlinear kernels 

can model complex relationships [9]. Studies like those by Villano, 

Mauro, and Pedace [10] have extensively reviewed ML and deep 

learning (DL) methods for building energy management, 

emphasizing their potential and limitations. While CNN-LSTM 

models, as proposed by Elmaz et al. [11], have demonstrated high 

accuracy (R² > 0.9) in IAT prediction, their architectural complexity 

necessitates substantial computational resources, making them less 

practical for resource-constrained settings. Two strategies were 

developed in Mtibaa et al. [12] LSTM-MISO for multi-input single- 

output and LSTM-MIMO for multi-output prediction. The 

performance of these strategies was evaluated based on two real 

smart buildings with variable (VAV) and constant (CAV) air volume 

systems. The experimental results showed a significant advantage of 

the LSTM model over multilayer perceptron models. Hamayat et al. 

[13], in turn, propose the use of a certain modification of Bi-LSTM, 

which is a black box model based on artificial intelligence and data- 

driven approaches. The results of the numerical experiments showed 

an improvement in IAT prediction of up to 10% using the proposed 

model compared to the standard LSTM model for IAT prediction. 

The study by Liang et al. [14] employs a surrogate modeling 

approach similar to ours, to replace complex physical models with 

simplified yet accurate data-driven models. However, their work has 

limitations, including the lack of consideration for time dependencies 

due to the use of the K-nearest neighbors (KNN) algorithm, the 

specificity of their model to a single region (Shanghai, China), and 

the restriction of input parameters to only seven key building 

characteristics. Zouloumis et al. [15] present a model for predicting 

the required thermal capacity of buildings using multilinear 

regression and analyzing heat loss, heat capacity, and air infiltration. 

While this traditional approach demonstrates satisfactory accuracy, it 

has notable limitations. Langtry et al. [16] examined the use of data 

to improve the accuracy of building condition forecasting models and 

the effectiveness of a model predictive control (MPC) scheme in a 

distributed generation and storage power system. Their findings 

revealed that a simple linear multilayer perceptron model could 

achieve forecast accuracy comparable to more advanced machine 

learning models, with the added benefits of requiring less data and 

computation. Kontopoulou et al. [17], conducted a comparative 

analysis of ARIMA models alongside machine learning methods 

such as neural networks, support vector machines, decision trees, 

linear models, and deep learning. The effectiveness of using ARIMA 

and SARIMA models in forecasting is described by Petropoulos et 

al. [18]. Additionally, the use of the Holt-Winters method19 accounts 

for trends and seasonality in time series, making it effective for 

predicting building performance when clear cyclic patterns are 

present. Each of the discussed methods has its advantages and 

limitations, and they can be used individually or in combination to 

obtain more accurate and reliable building performance forecasts. 
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3. PROPOSED METHODOLOGY 

 
This project focuses on analyzing IoT-based temperature data to 

classify whether a location is indoor or outdoor using machine learning 

algorithms. By preprocessing the data, engineering relevant features, 

and training models, the goal is to make accurate and reliable 

predictions that can support industries such as environmental 

monitoring, smart city development, and building management 

systems. The process begins with data cleaning and preparation, 

ensuring missing values and duplicates are handled while converting 

datetime information into structured features. Feature engineering 

involves extracting meaningful components such as day, month, year, 

hour, and minute from the timestamp to enhance the dataset. 

Correlations between features are explored to identify key drivers 

influencing the classification of locations as indoor or outdoor. 

 

For model development, two machine learning algorithms— 

XGBoostClassifier and DecisionTreeClassifier—are trained and 

evaluated. The trained models are saved for future use and efficient 

deployment. Performance evaluation is conducted using metrics like 

Mean Squared Error (MSE), Mean Absolute Error (MAE), and R² 

score, with visualizations such as scatter plots comparing actual and 

predicted values. The trained models are then tested on new data, 

where predictions are saved along with input values for validation. To 

ensure scalability and reusability, the models are saved using joblib, 

allowing them to be reused without retraining. The workflow is 

modularized for potential integration with real-time systems. 

 

The structured workflow begins with data loading, where the dataset 

(IOT-temp.csv) is imported using pandas for manipulation and 

exploration. Exploratory Data Analysis (EDA) follows, involving 

basic statistics, checking for missing values, and identifying duplicate 

entries. Data cleaning steps include removing duplicate rows, 

converting timestamps into datetime objects, and extracting date-time 

components for feature engineering. Data visualization techniques 

such as heatmaps are applied to explore feature correlations. 

Preprocessing includes encoding categorical variables like 

indoor/outdoor classification using LabelEncoder. The dataset is then 

split into training (80%) and testing (20%) subsets. 

 

During model training, both XGBoostClassifier and 

DecisionTreeClassifier are implemented. If pre-trained models are 

available, they are loaded; otherwise, new models are trained and 

saved for future use. Performance evaluation is conducted through a 

custom metrics function that computes MSE, MAE, and R² scores, 

with scatter plots visualizing actual vs. predicted values. The trained 

models are then tested on a randomly selected sample of 20 rows from 

the dataset, with predictions saved into testdata.csv. The final output 

consists of predictions alongside insights from the models, with trained 

models stored for future deployment. 

 

DecisionTreeClassifier is a key algorithm used in this project. It is a 

machine learning model that builds a decision tree, where each internal 

node represents a feature, each branch represents a decision rule, and 

each leaf node represents a class label. The dataset is recursively split 

based on the most significant features, allowing the tree-like structure 

to make predictions by following paths from root to leaf. In the project, 

DecisionTreeClassifier classifies whether a location is indoor or 

outdoor based on IoT temperature data. The workflow for this 

classifier involves preparing the dataset by extracting features such as 

date, month, year, hour, and minute, followed by splitting the dataset 

into training (80%) and testing (20%) sets. 

 

The model is trained using the training dataset, learning decision rules 

that maximize the separation between target classes. Performance 

evaluation is conducted using MSE, MAE, and R² score, followed by 

testing on a sample dataset for prediction. The trained model is saved 

as a .pkl file (decision_tree_classifier.pkl) to facilitate reuse without 

retraining. This classifier is suitable for the project due to its simplicity, 

ability to handle numerical and categorical data, and automatic feature 

selection. It also serves as a baseline model for comparison with 

advanced algorithms like XGBoostClassifier. 

 

Applications: 

This project has several real-world applications across different 

industries: 

• Environmental Monitoring: 

Enhances air quality analysis and pollution tracking. 

Supports climate studies and weather station data 

classification. 

• Smart Cities: 

Optimizes heating, cooling, and ventilation systems. 

Contributes to energy-efficient urban infrastructure. 

• Building Management Systems: 

Enables automated temperature control for cost-effective 

operations. 

Improves HVAC (Heating, Ventilation, and Air 

Conditioning) efficiency. 

• Real-time IoT Deployments: 

Helps classify temperature data in weather stations and 

sensor-based monitoring. 

Enhances safety applications with environmental condition 

tracking. 

• Industrial Applications: 

Supports supply chain logistics for temperature-sensitive 

goods. 

Ensures optimal storage and transportation conditions. 

• Healthcare & Wellness: 

Monitors indoor and outdoor temperature exposure for 

health analysis. 

Aids in personalized climate adaptation strategies. 

Advantages: 

• Easy to Understand & Interpret – The visual representation 

makes it intuitive and accessible, even for non-technical users. 

• Handles Both Numerical & Categorical Data – Works 

efficiently with different data types, requiring minimal 

preprocessing. 

• No Assumption on Data Distribution – Performs well with real- 

world datasets without needing a predefined distribution. 

• Feature Importance Analysis – Identifies the most relevant 

features, offering insights into key classification factors. 

• Scalability & Efficiency – Can process large datasets effectively 

and be deployed for real-time applications. 

• Minimal Data Preprocessing Required – Does not require 

scaling or normalization, saving time in model development. 

• Captures Complex Relationships – Effectively models non- 

linear patterns and learns from historical trends. 

• Robust to Outliers – Less sensitive to extreme values due to 
logical data splitting. 
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saving and loading trained models, while warnings are suppress 

ensure smooth execution. The dataset, stored in a CSV file named 

• Works Well for IoT Temperature Classification – Efficiently 

processes timestamp and numerical attributes, serving as a strong 

baseline model before exploring advanced algorithms like 

XGBoost 

4. EXPERIMENTAL ANALYSIS 

The project focuses on analyzing IoT temperature data using machine 

learning models to classify whether a location is indoor or outdoor. It 

involves data preprocessing, feature engineering, machine learning 

model training, evaluation, and prediction. The implementation begins 

with importing essential libraries such as pandas and numpy for data 

manipulation, matplotlib and seaborn for visualization, and sklearn for 

preprocessing and model evaluation. Additionally, joblib is used for 

Fig: Displaying the regression report of AdaBoost model ed to 

IOT- 

temp.csv, is loaded into a pandas DataFrame, and various exploratory 

steps are performed, including checking its shape, displaying summary 

statistics, and identifying missing or duplicate values. 

Data cleaning involves removing duplicate rows and converting the 

noted_date column into a datetime format. New features such as date, 

month, year, hours, and minutes are extracted from this column for 

enhanced analysis, and the original noted_date column is dropped. A 

heatmap is generated to visualize correlations between numerical 

features, helping identify relationships within the dataset. Categorical 

variables like location are then encoded using Label Encoding to 

convert them into numerical values. The dataset is split into features 

(X) and the target variable (y), where out/in serves as the classification 

target. The data is then divided into training and testing sets, with 80% 

allocated for training and 20% for testing. 

 

 

 

Fig 4.1: Illustration of confusion matrix obtained using 

XGBoost model. 

A custom function is implemented to calculate and display key 

performance metrics, including Mean Squared Error (MSE), Mean 

Absolute Error (MAE), and R² Score. A scatter plot visualizes actual 

versus predicted values with a trend line to assess model performance. 

The machine learning models used for classification include XGBoost 

and Decision Tree classifiers. If a pre-trained XGBoost model is 

available, it is loaded for prediction; otherwise, a new model is trained, 

evaluated, and saved. The same process is followed for the Decision 

Tree classifier. Random sampling is performed on 20 rows of the 

dataset, which are saved as testdata.csv. The Decision Tree classifier 

then predicts the class labels for this sample data, and the results are 

stored within the test dataset. 

The dataset consists of IoT-based temperature readings collected over 

time, aiming to classify environments as indoor or outdoor. Key 

features include noted_date, which is split into separate components 

for improved analysis, temperature to differentiate between indoor and 

outdoor settings, humidity to measure moisture content in the air, 

location to specify where the sensor was placed, and pressure to 

capture atmospheric conditions. The out/in column serves as the target 

variable for classification. Several preprocessing steps are applied, 

including handling missing values, removing duplicates, performing 

feature engineering, and encoding categorical variables. The dataset 

provides valuable insights, enabling the development of machine 

learning models that automate indoor/outdoor classification using 

temperature, humidity, and time-based attributes. 

 

Fig 4.2: Illustration of confusion matrix obtained using 

Decision Tree model. 
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Fig: Comparison of all models 

The results indicate strong classification performance. The XGBoost 

classifier achieves an accuracy of 92.13%, demonstrating high 

precision and recall, with an F1-score of 89.01%. Meanwhile, the 

Decision Tree classifier outperforms XGBoost, achieving an 

impressive accuracy of 97.2%, with high precision and recall values, 

leading to a well-optimized classification model. 

5. CONCLUSION 

The project demonstrates an effective approach to classifying indoor 

and outdoor environments using IoT temperature data and machine 

learning algorithms like Decision Tree Classifier and XGBoost 

Classifier. By automating the classification process, it overcomes 

limitations of traditional systems, such as manual intervention, static 

thresholds, and low scalability. The use of advanced algorithms 

ensures higher accuracy, adaptability, and efficiency, making it suitable 

for large-scale IoT deployments. 

The integration of feature engineering, model evaluation, and 

performance metrics highlights the importance of data preprocessing 

and algorithm selection in achieving reliable results. Additionally, the 

ability to save trained models for future use allows for seamless 

integration into real-time IoT applications. 

The future scope of the project is vast, with several promising 

extensions and applications. One major advancement would be 

integrating the model with real-time IoT systems, enabling continuous 

data streaming from sensors for dynamic classification. Incorporating 

additional environmental features such as humidity, air pressure, and 

light intensity could further enhance the model’s accuracy and 

adaptability. 

Another key improvement involves developing hybrid models that 

combine machine learning with deep learning techniques. This would 

allow the system to handle complex data more effectively while 

improving classification accuracy. To ensure scalability and efficiency, 

deploying the project on cloud platforms or edge devices would enable 

real-time processing in industrial IoT applications. 

Predictive analytics could also be integrated to anticipate 

environmental changes or anomalies, supporting proactive decision- 

making in smart systems. Additionally, incorporating Explainable AI 

(XAI) would enhance transparency by providing insights into the 

model’s decision-making process. This would be particularly valuable 

for critical applications like healthcare and industrial safety. 
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